MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. 1350 Aluminum

S30815 stainless steel belongs to the iron alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 45
1.4 to 30
Fatigue Strength, MPa 320
24 to 50
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 480
44 to 110
Tensile Strength: Ultimate (UTS), MPa 680
68 to 190
Tensile Strength: Yield (Proof), MPa 350
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1400
660
Melting Onset (Solidus), °C 1360
650
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.3
8.3
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 160
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 310
4.4 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25
7.0 to 19
Strength to Weight: Bending, points 22
14 to 27
Thermal Diffusivity, mm2/s 4.0
96
Thermal Shock Resistance, points 15
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Boron (B), % 0
0 to 0.050
Carbon (C), % 0.050 to 0.1
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0 to 0.010
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 62.8 to 68.4
0 to 0.4
Manganese (Mn), % 0 to 0.8
0 to 0.010
Nickel (Ni), % 10 to 12
0
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.4 to 2.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1