MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. AISI 316 Stainless Steel

Both S30815 stainless steel and AISI 316 stainless steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 35 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160 to 360
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
8.0 to 55
Fatigue Strength, MPa 320
210 to 430
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
80
Rockwell B Hardness 82
80
Shear Modulus, GPa 77
78
Shear Strength, MPa 480
350 to 690
Tensile Strength: Ultimate (UTS), MPa 680
520 to 1180
Tensile Strength: Yield (Proof), MPa 350
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 430
410
Maximum Temperature: Mechanical, °C 1020
590
Melting Completion (Liquidus), °C 1400
1400
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.3
3.9
Embodied Energy, MJ/kg 47
53
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 24
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 310
130 to 1820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
18 to 41
Strength to Weight: Bending, points 22
18 to 31
Thermal Diffusivity, mm2/s 4.0
4.1
Thermal Shock Resistance, points 15
11 to 26

Alloy Composition

Carbon (C), % 0.050 to 0.1
0 to 0.080
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
16 to 18
Iron (Fe), % 62.8 to 68.4
62 to 72
Manganese (Mn), % 0 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 10 to 12
10 to 14
Nitrogen (N), % 0.14 to 0.2
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 1.4 to 2.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030