MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. EN 1.4542 Stainless Steel

Both S30815 stainless steel and EN 1.4542 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
5.7 to 20
Fatigue Strength, MPa 320
370 to 640
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 480
550 to 860
Tensile Strength: Ultimate (UTS), MPa 680
880 to 1470
Tensile Strength: Yield (Proof), MPa 350
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 430
440
Maximum Temperature: Mechanical, °C 1020
860
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 17
13
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 160
130

Common Calculations

PREN (Pitting Resistance) 24
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 310
880 to 4360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
31 to 52
Strength to Weight: Bending, points 22
26 to 37
Thermal Diffusivity, mm2/s 4.0
4.3
Thermal Shock Resistance, points 15
29 to 49

Alloy Composition

Carbon (C), % 0.050 to 0.1
0 to 0.070
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 62.8 to 68.4
69.6 to 79
Manganese (Mn), % 0 to 0.8
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 10 to 12
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 1.4 to 2.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015