MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. Grade 18 Titanium

S30815 stainless steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
11 to 17
Fatigue Strength, MPa 320
330 to 480
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
23
Shear Modulus, GPa 77
40
Shear Strength, MPa 480
420 to 590
Tensile Strength: Ultimate (UTS), MPa 680
690 to 980
Tensile Strength: Yield (Proof), MPa 350
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1020
330
Melting Completion (Liquidus), °C 1400
1640
Melting Onset (Solidus), °C 1360
1590
Specific Heat Capacity, J/kg-K 490
550
Thermal Conductivity, W/m-K 15
8.3
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 3.3
41
Embodied Energy, MJ/kg 47
670
Embodied Water, L/kg 160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 310
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
43 to 61
Strength to Weight: Bending, points 22
39 to 49
Thermal Diffusivity, mm2/s 4.0
3.4
Thermal Shock Resistance, points 15
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.050 to 0.1
0 to 0.080
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.8 to 68.4
0 to 0.25
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 10 to 12
0
Nitrogen (N), % 0.14 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.4 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4