MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. Grade 21 Titanium

S30815 stainless steel belongs to the iron alloys classification, while grade 21 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is grade 21 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 45
9.0 to 17
Fatigue Strength, MPa 320
550 to 660
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
22
Shear Modulus, GPa 77
51
Shear Strength, MPa 480
550 to 790
Tensile Strength: Ultimate (UTS), MPa 680
890 to 1340
Tensile Strength: Yield (Proof), MPa 350
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1020
310
Melting Completion (Liquidus), °C 1400
1740
Melting Onset (Solidus), °C 1360
1690
Specific Heat Capacity, J/kg-K 490
500
Thermal Conductivity, W/m-K 15
7.5
Thermal Expansion, µm/m-K 17
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 17
60
Density, g/cm3 7.7
5.4
Embodied Carbon, kg CO2/kg material 3.3
32
Embodied Energy, MJ/kg 47
490
Embodied Water, L/kg 160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
110 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 310
2760 to 5010
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 25
46 to 69
Strength to Weight: Bending, points 22
38 to 50
Thermal Diffusivity, mm2/s 4.0
2.8
Thermal Shock Resistance, points 15
66 to 100

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.050 to 0.1
0 to 0.050
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.8 to 68.4
0 to 0.4
Manganese (Mn), % 0 to 0.8
0
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 10 to 12
0
Niobium (Nb), % 0
2.2 to 3.2
Nitrogen (N), % 0.14 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.17
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.4 to 2.0
0.15 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
76 to 81.2
Residuals, % 0
0 to 0.4