MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. Grade 34 Titanium

S30815 stainless steel belongs to the iron alloys classification, while grade 34 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is grade 34 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
20
Fatigue Strength, MPa 320
310
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
34
Shear Modulus, GPa 77
41
Shear Strength, MPa 480
320
Tensile Strength: Ultimate (UTS), MPa 680
510
Tensile Strength: Yield (Proof), MPa 350
450

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1020
320
Melting Completion (Liquidus), °C 1400
1660
Melting Onset (Solidus), °C 1360
1610
Specific Heat Capacity, J/kg-K 490
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 17
55
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 3.3
33
Embodied Energy, MJ/kg 47
530
Embodied Water, L/kg 160
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
100
Resilience: Unit (Modulus of Resilience), kJ/m3 310
960
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
31
Strength to Weight: Bending, points 22
31
Thermal Diffusivity, mm2/s 4.0
8.4
Thermal Shock Resistance, points 15
39

Alloy Composition

Carbon (C), % 0.050 to 0.1
0 to 0.080
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0.1 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.8 to 68.4
0 to 0.3
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 10 to 12
0.35 to 0.55
Nitrogen (N), % 0.14 to 0.2
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 1.4 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98 to 99.52
Residuals, % 0
0 to 0.4