MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. C63000 Bronze

S30815 stainless steel belongs to the iron alloys classification, while C63000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 45
7.9 to 15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 480
400 to 470
Tensile Strength: Ultimate (UTS), MPa 680
660 to 790
Tensile Strength: Yield (Proof), MPa 350
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1020
230
Melting Completion (Liquidus), °C 1400
1050
Melting Onset (Solidus), °C 1360
1040
Specific Heat Capacity, J/kg-K 490
440
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.3
3.5
Embodied Energy, MJ/kg 47
57
Embodied Water, L/kg 160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 310
470 to 640
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
22 to 26
Strength to Weight: Bending, points 22
20 to 23
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 15
23 to 27

Alloy Composition

Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0.050 to 0.1
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
76.8 to 85
Iron (Fe), % 62.8 to 68.4
2.0 to 4.0
Manganese (Mn), % 0 to 0.8
0 to 1.5
Nickel (Ni), % 10 to 12
4.0 to 5.5
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.4 to 2.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5