MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. C72700 Copper-nickel

S30815 stainless steel belongs to the iron alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 45
4.0 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 480
310 to 620
Tensile Strength: Ultimate (UTS), MPa 680
460 to 1070
Tensile Strength: Yield (Proof), MPa 350
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1020
200
Melting Completion (Liquidus), °C 1400
1100
Melting Onset (Solidus), °C 1360
930
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 15
54
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 17
36
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.3
4.0
Embodied Energy, MJ/kg 47
62
Embodied Water, L/kg 160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 310
1420 to 4770
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
14 to 34
Strength to Weight: Bending, points 22
15 to 26
Thermal Diffusivity, mm2/s 4.0
16
Thermal Shock Resistance, points 15
16 to 38

Alloy Composition

Carbon (C), % 0.050 to 0.1
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
82.1 to 86
Iron (Fe), % 62.8 to 68.4
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.8
0.050 to 0.3
Nickel (Ni), % 10 to 12
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.4 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3