MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. C96900 Copper-nickel

S30815 stainless steel belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 45
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 680
850
Tensile Strength: Yield (Proof), MPa 350
830

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1020
210
Melting Completion (Liquidus), °C 1400
1060
Melting Onset (Solidus), °C 1360
960
Specific Heat Capacity, J/kg-K 490
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
39
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.3
4.6
Embodied Energy, MJ/kg 47
72
Embodied Water, L/kg 160
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
38
Resilience: Unit (Modulus of Resilience), kJ/m3 310
2820
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
27
Strength to Weight: Bending, points 22
23
Thermal Shock Resistance, points 15
30

Alloy Composition

Carbon (C), % 0.050 to 0.1
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
73.6 to 78
Iron (Fe), % 62.8 to 68.4
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.8
0.050 to 0.3
Nickel (Ni), % 10 to 12
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.4 to 2.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5