MakeItFrom.com
Menu (ESC)

S31060 Stainless Steel vs. C83800 Bronze

S31060 stainless steel belongs to the iron alloys classification, while C83800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S31060 stainless steel and the bottom bar is C83800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 46
20
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
39
Tensile Strength: Ultimate (UTS), MPa 680
230
Tensile Strength: Yield (Proof), MPa 310
110

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 1080
160
Melting Completion (Liquidus), °C 1420
1000
Melting Onset (Solidus), °C 1370
840
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
72
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
15

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.4
2.9
Embodied Energy, MJ/kg 48
47
Embodied Water, L/kg 170
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
39
Resilience: Unit (Modulus of Resilience), kJ/m3 250
53
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
7.4
Strength to Weight: Bending, points 22
9.6
Thermal Diffusivity, mm2/s 4.0
22
Thermal Shock Resistance, points 15
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0.050 to 0.1
0
Cerium (Ce), % 0 to 0.070
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
82 to 83.8
Iron (Fe), % 61.4 to 67.8
0 to 0.3
Lanthanum (La), % 0 to 0.070
0
Lead (Pb), % 0
5.0 to 7.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 10 to 12.5
0 to 1.0
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
3.3 to 4.2
Zinc (Zn), % 0
5.0 to 8.0
Residuals, % 0
0 to 0.7