MakeItFrom.com
Menu (ESC)

S31100 Stainless Steel vs. AISI 348H Stainless Steel

Both S31100 stainless steel and AISI 348H stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S31100 stainless steel and the bottom bar is AISI 348H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 4.5
40
Fatigue Strength, MPa 330
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
77
Shear Strength, MPa 580
400
Tensile Strength: Ultimate (UTS), MPa 1000
580
Tensile Strength: Yield (Proof), MPa 710
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 470
500
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
20
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
3.9
Embodied Energy, MJ/kg 44
56
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1240
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 36
21
Strength to Weight: Bending, points 29
20
Thermal Diffusivity, mm2/s 4.2
4.1
Thermal Shock Resistance, points 28
13

Alloy Composition

Carbon (C), % 0 to 0.060
0.040 to 0.1
Chromium (Cr), % 25 to 27
17 to 19
Cobalt (Co), % 0
0 to 0.2
Iron (Fe), % 63.6 to 69
63.8 to 73.6
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 6.0 to 7.0
9.0 to 13
Niobium (Nb), % 0
0.32 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0