MakeItFrom.com
Menu (ESC)

S31100 Stainless Steel vs. ASTM A182 Grade F22V

Both S31100 stainless steel and ASTM A182 grade F22V are iron alloys. They have 69% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S31100 stainless steel and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.5
21
Fatigue Strength, MPa 330
320
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
74
Shear Strength, MPa 580
420
Tensile Strength: Ultimate (UTS), MPa 1000
670
Tensile Strength: Yield (Proof), MPa 710
460

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
460
Melting Completion (Liquidus), °C 1420
1470
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
4.2
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.1
2.5
Embodied Energy, MJ/kg 44
35
Embodied Water, L/kg 170
61

Common Calculations

PREN (Pitting Resistance) 26
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1240
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 36
24
Strength to Weight: Bending, points 29
22
Thermal Diffusivity, mm2/s 4.2
11
Thermal Shock Resistance, points 28
19

Alloy Composition

Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0 to 0.060
0.11 to 0.15
Chromium (Cr), % 25 to 27
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 63.6 to 69
94.6 to 96.4
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 6.0 to 7.0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35