MakeItFrom.com
Menu (ESC)

S31100 Stainless Steel vs. EN 1.4988 Stainless Steel

Both S31100 stainless steel and EN 1.4988 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31100 stainless steel and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 4.5
34
Fatigue Strength, MPa 330
230
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
77
Shear Strength, MPa 580
430
Tensile Strength: Ultimate (UTS), MPa 1000
640
Tensile Strength: Yield (Proof), MPa 710
290

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 470
520
Maximum Temperature: Mechanical, °C 1100
920
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.1
6.0
Embodied Energy, MJ/kg 44
89
Embodied Water, L/kg 170
150

Common Calculations

PREN (Pitting Resistance) 26
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1240
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 36
23
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 4.2
4.0
Thermal Shock Resistance, points 28
14

Alloy Composition

Carbon (C), % 0 to 0.060
0.040 to 0.1
Chromium (Cr), % 25 to 27
15.5 to 17.5
Iron (Fe), % 63.6 to 69
62.1 to 69.5
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 6.0 to 7.0
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.6 to 0.85