MakeItFrom.com
Menu (ESC)

S31100 Stainless Steel vs. C23000 Brass

S31100 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S31100 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 4.5
2.9 to 47
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
42
Shear Strength, MPa 580
220 to 340
Tensile Strength: Ultimate (UTS), MPa 1000
280 to 590
Tensile Strength: Yield (Proof), MPa 710
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
1030
Melting Onset (Solidus), °C 1380
990
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
39

Otherwise Unclassified Properties

Base Metal Price, % relative 16
28
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 44
43
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 1240
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 36
8.9 to 19
Strength to Weight: Bending, points 29
11 to 18
Thermal Diffusivity, mm2/s 4.2
48
Thermal Shock Resistance, points 28
9.4 to 20

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 25 to 27
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 63.6 to 69
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.0 to 7.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2