MakeItFrom.com
Menu (ESC)

S31254 Stainless Steel vs. S44537 Stainless Steel

Both S31254 stainless steel and S44537 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 75% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31254 stainless steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
21
Fatigue Strength, MPa 290
230
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 84
80
Shear Modulus, GPa 80
79
Shear Strength, MPa 490
320
Tensile Strength: Ultimate (UTS), MPa 720
510
Tensile Strength: Yield (Proof), MPa 330
360

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 420
530
Maximum Temperature: Mechanical, °C 1090
1000
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
19
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.5
3.4
Embodied Energy, MJ/kg 74
50
Embodied Water, L/kg 190
140

Common Calculations

PREN (Pitting Resistance) 44
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
95
Resilience: Unit (Modulus of Resilience), kJ/m3 270
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 3.8
5.6
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 19.5 to 20.5
20 to 24
Copper (Cu), % 0.5 to 1.0
0 to 0.5
Iron (Fe), % 51.4 to 56.3
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.0
0 to 0.8
Molybdenum (Mo), % 6.0 to 6.5
0
Nickel (Ni), % 17.5 to 18.5
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0.18 to 0.22
0 to 0.040
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.8
0.1 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0