MakeItFrom.com
Menu (ESC)

S31260 Stainless Steel vs. Grade 7 Titanium

S31260 stainless steel belongs to the iron alloys classification, while grade 7 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S31260 stainless steel and the bottom bar is grade 7 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
24
Fatigue Strength, MPa 370
250
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 80
38
Shear Strength, MPa 500
270
Tensile Strength: Ultimate (UTS), MPa 790
420
Tensile Strength: Yield (Proof), MPa 540
340

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
22
Thermal Expansion, µm/m-K 13
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.2

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.9
47
Embodied Energy, MJ/kg 53
800
Embodied Water, L/kg 180
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
95
Resilience: Unit (Modulus of Resilience), kJ/m3 720
560
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28
26
Strength to Weight: Bending, points 24
28
Thermal Diffusivity, mm2/s 4.3
8.9
Thermal Shock Resistance, points 22
31

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.2 to 0.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 59.6 to 67.6
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.1 to 0.3
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.12 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.7 to 99.88
Tungsten (W), % 0.1 to 0.5
0
Residuals, % 0
0 to 0.4