MakeItFrom.com
Menu (ESC)

S31260 Stainless Steel vs. S35140 Stainless Steel

Both S31260 stainless steel and S35140 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31260 stainless steel and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
34
Fatigue Strength, MPa 370
250
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
78
Shear Strength, MPa 500
460
Tensile Strength: Ultimate (UTS), MPa 790
690
Tensile Strength: Yield (Proof), MPa 540
310

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
500
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 20
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.9
5.5
Embodied Energy, MJ/kg 53
78
Embodied Water, L/kg 180
190

Common Calculations

PREN (Pitting Resistance) 39
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
190
Resilience: Unit (Modulus of Resilience), kJ/m3 720
250
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 4.3
3.7
Thermal Shock Resistance, points 22
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 24 to 26
20 to 22
Copper (Cu), % 0.2 to 0.8
0
Iron (Fe), % 59.6 to 67.6
44.1 to 52.7
Manganese (Mn), % 0 to 1.0
1.0 to 3.0
Molybdenum (Mo), % 2.5 to 3.5
1.0 to 2.0
Nickel (Ni), % 5.5 to 7.5
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0.1 to 0.3
0.080 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 0.1 to 0.5
0