MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. A413.0 Aluminum

S31266 stainless steel belongs to the iron alloys classification, while A413.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 40
3.5
Fatigue Strength, MPa 400
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 590
170
Tensile Strength: Ultimate (UTS), MPa 860
240
Tensile Strength: Yield (Proof), MPa 470
130

Thermal Properties

Latent Heat of Fusion, J/g 310
570
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1470
590
Melting Onset (Solidus), °C 1420
580
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 6.5
7.6
Embodied Energy, MJ/kg 89
140
Embodied Water, L/kg 220
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 540
120
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 29
25
Strength to Weight: Bending, points 24
33
Thermal Diffusivity, mm2/s 3.1
52
Thermal Shock Resistance, points 18
11

Alloy Composition

Aluminum (Al), % 0
82.9 to 89
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.5
0 to 1.0
Iron (Fe), % 34.1 to 46
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 2.0 to 4.0
0 to 0.35
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
0 to 0.5
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
11 to 13
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25