MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. AISI 309Cb Stainless Steel

Both S31266 stainless steel and AISI 309Cb stainless steel are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is AISI 309Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 40
39
Fatigue Strength, MPa 400
200
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
46
Shear Modulus, GPa 81
78
Shear Strength, MPa 590
390
Tensile Strength: Ultimate (UTS), MPa 860
580
Tensile Strength: Yield (Proof), MPa 470
230

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 440
510
Maximum Temperature: Mechanical, °C 1100
1090
Melting Completion (Liquidus), °C 1470
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.5
4.1
Embodied Energy, MJ/kg 89
59
Embodied Water, L/kg 220
170

Common Calculations

PREN (Pitting Resistance) 54
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
180
Resilience: Unit (Modulus of Resilience), kJ/m3 540
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
20
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 3.1
4.0
Thermal Shock Resistance, points 18
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 23 to 25
22 to 24
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 34.1 to 46
56 to 66
Manganese (Mn), % 2.0 to 4.0
0 to 2.0
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
12 to 16
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 1.5 to 2.5
0