MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. AISI 310S Stainless Steel

Both S31266 stainless steel and AISI 310S stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 40
34 to 44
Fatigue Strength, MPa 400
250 to 280
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 81
79
Shear Strength, MPa 590
420 to 470
Tensile Strength: Ultimate (UTS), MPa 860
600 to 710
Tensile Strength: Yield (Proof), MPa 470
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
25
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 6.5
4.3
Embodied Energy, MJ/kg 89
61
Embodied Water, L/kg 220
190

Common Calculations

PREN (Pitting Resistance) 54
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 540
190 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
21 to 25
Strength to Weight: Bending, points 24
20 to 22
Thermal Diffusivity, mm2/s 3.1
4.1
Thermal Shock Resistance, points 18
14 to 16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 23 to 25
24 to 26
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 34.1 to 46
48.3 to 57
Manganese (Mn), % 2.0 to 4.0
0 to 2.0
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
19 to 22
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 1.5 to 2.5
0