MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. AISI 347LN Stainless Steel

Both S31266 stainless steel and AISI 347LN stainless steel are iron alloys. Both are furnished in the annealed condition. They have 71% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is AISI 347LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 40
40
Fatigue Strength, MPa 400
200
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
56
Shear Modulus, GPa 81
77
Shear Strength, MPa 590
400
Tensile Strength: Ultimate (UTS), MPa 860
590
Tensile Strength: Yield (Proof), MPa 470
230

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
460
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1470
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
18
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.5
3.5
Embodied Energy, MJ/kg 89
49
Embodied Water, L/kg 220
150

Common Calculations

PREN (Pitting Resistance) 54
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
190
Resilience: Unit (Modulus of Resilience), kJ/m3 540
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
21
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 3.1
4.1
Thermal Shock Resistance, points 18
13

Alloy Composition

Carbon (C), % 0 to 0.030
0.0050 to 0.020
Chromium (Cr), % 23 to 25
17 to 19
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 34.1 to 46
64.3 to 73.7
Manganese (Mn), % 2.0 to 4.0
0 to 2.0
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
9.0 to 13
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0.35 to 0.6
0.060 to 0.1
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 1.5 to 2.5
0