MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. EN 1.4021 Stainless Steel

Both S31266 stainless steel and EN 1.4021 stainless steel are iron alloys. They have 54% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 40
11 to 17
Fatigue Strength, MPa 400
240 to 380
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 590
390 to 530
Tensile Strength: Ultimate (UTS), MPa 860
630 to 880
Tensile Strength: Yield (Proof), MPa 470
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 1100
760
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
30
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 6.5
1.9
Embodied Energy, MJ/kg 89
27
Embodied Water, L/kg 220
100

Common Calculations

PREN (Pitting Resistance) 54
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
400 to 1160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
23 to 31
Strength to Weight: Bending, points 24
21 to 26
Thermal Diffusivity, mm2/s 3.1
8.1
Thermal Shock Resistance, points 18
22 to 31

Alloy Composition

Carbon (C), % 0 to 0.030
0.16 to 0.25
Chromium (Cr), % 23 to 25
12 to 14
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 34.1 to 46
83.2 to 87.8
Manganese (Mn), % 2.0 to 4.0
0 to 1.5
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
0
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Tungsten (W), % 1.5 to 2.5
0