MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. Grade 19 Titanium

S31266 stainless steel belongs to the iron alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 40
5.6 to 17
Fatigue Strength, MPa 400
550 to 620
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
22
Shear Modulus, GPa 81
47
Shear Strength, MPa 590
550 to 750
Tensile Strength: Ultimate (UTS), MPa 860
890 to 1300
Tensile Strength: Yield (Proof), MPa 470
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
370
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1420
1600
Specific Heat Capacity, J/kg-K 460
520
Thermal Conductivity, W/m-K 12
6.2
Thermal Expansion, µm/m-K 16
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 37
45
Density, g/cm3 8.2
5.0
Embodied Carbon, kg CO2/kg material 6.5
47
Embodied Energy, MJ/kg 89
760
Embodied Water, L/kg 220
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 540
3040 to 5530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
33
Strength to Weight: Axial, points 29
49 to 72
Strength to Weight: Bending, points 24
41 to 53
Thermal Diffusivity, mm2/s 3.1
2.4
Thermal Shock Resistance, points 18
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 23 to 25
5.5 to 6.5
Copper (Cu), % 1.0 to 2.5
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 34.1 to 46
0 to 0.3
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 5.2 to 6.2
3.5 to 4.5
Nickel (Ni), % 21 to 24
0
Nitrogen (N), % 0.35 to 0.6
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
71.1 to 77
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4