MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. SAE-AISI 81B45 Steel

Both S31266 stainless steel and SAE-AISI 81B45 steel are iron alloys. They have 42% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is SAE-AISI 81B45 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 40
12 to 24
Fatigue Strength, MPa 400
250 to 350
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 590
340 to 400
Tensile Strength: Ultimate (UTS), MPa 860
540 to 670
Tensile Strength: Yield (Proof), MPa 470
350 to 560

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.3
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.5
1.5
Embodied Energy, MJ/kg 89
20
Embodied Water, L/kg 220
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
77 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
320 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
19 to 24
Strength to Weight: Bending, points 24
19 to 22
Thermal Diffusivity, mm2/s 3.1
11
Thermal Shock Resistance, points 18
17 to 21

Alloy Composition

Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0 to 0.030
0.43 to 0.48
Chromium (Cr), % 23 to 25
0.35 to 0.55
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 34.1 to 46
97 to 98
Manganese (Mn), % 2.0 to 4.0
0.75 to 1.0
Molybdenum (Mo), % 5.2 to 6.2
0.080 to 0.15
Nickel (Ni), % 21 to 24
0.2 to 0.4
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.040
Tungsten (W), % 1.5 to 2.5
0