MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. C81500 Copper

S31266 stainless steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 40
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
44
Tensile Strength: Ultimate (UTS), MPa 860
350
Tensile Strength: Yield (Proof), MPa 470
280

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1470
1090
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 12
320
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
82
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
83

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 6.5
2.6
Embodied Energy, MJ/kg 89
41
Embodied Water, L/kg 220
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
56
Resilience: Unit (Modulus of Resilience), kJ/m3 540
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 29
11
Strength to Weight: Bending, points 24
12
Thermal Diffusivity, mm2/s 3.1
91
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0.4 to 1.5
Copper (Cu), % 1.0 to 2.5
97.4 to 99.6
Iron (Fe), % 34.1 to 46
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
0
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5