MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. C83300 Brass

S31266 stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 40
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
42
Tensile Strength: Ultimate (UTS), MPa 860
220
Tensile Strength: Yield (Proof), MPa 470
69

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1470
1060
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
33

Otherwise Unclassified Properties

Base Metal Price, % relative 37
30
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 6.5
2.7
Embodied Energy, MJ/kg 89
44
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
60
Resilience: Unit (Modulus of Resilience), kJ/m3 540
21
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 29
6.9
Strength to Weight: Bending, points 24
9.2
Thermal Diffusivity, mm2/s 3.1
48
Thermal Shock Resistance, points 18
7.9

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.5
92 to 94
Iron (Fe), % 34.1 to 46
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
0
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
1.0 to 2.0
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7