MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. C86400 Bronze

S31266 stainless steel belongs to the iron alloys classification, while C86400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is C86400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 40
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 860
470
Tensile Strength: Yield (Proof), MPa 470
150

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1470
880
Melting Onset (Solidus), °C 1420
860
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 12
88
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
19
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
22

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 6.5
2.8
Embodied Energy, MJ/kg 89
48
Embodied Water, L/kg 220
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
63
Resilience: Unit (Modulus of Resilience), kJ/m3 540
110
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 29
16
Strength to Weight: Bending, points 24
17
Thermal Diffusivity, mm2/s 3.1
29
Thermal Shock Resistance, points 18
16

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.5
56 to 62
Iron (Fe), % 34.1 to 46
0.4 to 2.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 2.0 to 4.0
0.1 to 1.0
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
0 to 1.0
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.5
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
34 to 42
Residuals, % 0
0 to 1.0