MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. S35045 Stainless Steel

Both S31266 stainless steel and S35045 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 40
39
Fatigue Strength, MPa 400
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
78
Shear Strength, MPa 590
370
Tensile Strength: Ultimate (UTS), MPa 860
540
Tensile Strength: Yield (Proof), MPa 470
190

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Maximum Temperature: Corrosion, °C 440
520
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1470
1390
Melting Onset (Solidus), °C 1420
1340
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
34
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 6.5
5.8
Embodied Energy, MJ/kg 89
83
Embodied Water, L/kg 220
230

Common Calculations

PREN (Pitting Resistance) 54
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
170
Resilience: Unit (Modulus of Resilience), kJ/m3 540
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
19
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 3.1
3.2
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.030
0.060 to 0.1
Chromium (Cr), % 23 to 25
25 to 29
Copper (Cu), % 1.0 to 2.5
0 to 0.75
Iron (Fe), % 34.1 to 46
29.4 to 42.6
Manganese (Mn), % 2.0 to 4.0
0 to 1.5
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
32 to 37
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Tungsten (W), % 1.5 to 2.5
0