MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. S41045 Stainless Steel

Both S31266 stainless steel and S41045 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 54% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is S41045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 40
25
Fatigue Strength, MPa 400
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 590
280
Tensile Strength: Ultimate (UTS), MPa 860
430
Tensile Strength: Yield (Proof), MPa 470
230

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
430
Maximum Temperature: Mechanical, °C 1100
740
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
29
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
8.5
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.5
2.2
Embodied Energy, MJ/kg 89
31
Embodied Water, L/kg 220
100

Common Calculations

PREN (Pitting Resistance) 54
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
92
Resilience: Unit (Modulus of Resilience), kJ/m3 540
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
16
Strength to Weight: Bending, points 24
16
Thermal Diffusivity, mm2/s 3.1
7.8
Thermal Shock Resistance, points 18
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 23 to 25
12 to 13
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 34.1 to 46
83.8 to 88
Manganese (Mn), % 2.0 to 4.0
0 to 1.0
Molybdenum (Mo), % 5.2 to 6.2
0
Nickel (Ni), % 21 to 24
0 to 0.5
Niobium (Nb), % 0
0 to 0.6
Nitrogen (N), % 0.35 to 0.6
0 to 0.030
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 1.5 to 2.5
0