MakeItFrom.com
Menu (ESC)

S31277 Stainless Steel vs. 328.0 Aluminum

S31277 stainless steel belongs to the iron alloys classification, while 328.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31277 stainless steel and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
1.6 to 2.1
Fatigue Strength, MPa 380
55 to 80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 860
200 to 270
Tensile Strength: Yield (Proof), MPa 410
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 310
510
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 460
890
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.7
7.8
Embodied Energy, MJ/kg 90
140
Embodied Water, L/kg 220
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 410
92 to 200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 29
21 to 28
Strength to Weight: Bending, points 25
28 to 34
Thermal Shock Resistance, points 19
9.2 to 12

Alloy Composition

Aluminum (Al), % 0
84.5 to 91.1
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20.5 to 23
0 to 0.35
Copper (Cu), % 0.5 to 1.5
1.0 to 2.0
Iron (Fe), % 35.5 to 46.2
0 to 1.0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 3.0
0.2 to 0.6
Molybdenum (Mo), % 6.5 to 8.0
0
Nickel (Ni), % 26 to 28
0 to 0.25
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
7.5 to 8.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5