MakeItFrom.com
Menu (ESC)

S31277 Stainless Steel vs. 364.0 Aluminum

S31277 stainless steel belongs to the iron alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31277 stainless steel and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
7.5
Fatigue Strength, MPa 380
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 600
200
Tensile Strength: Ultimate (UTS), MPa 860
300
Tensile Strength: Yield (Proof), MPa 410
160

Thermal Properties

Latent Heat of Fusion, J/g 310
520
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 36
11
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 6.7
8.0
Embodied Energy, MJ/kg 90
150
Embodied Water, L/kg 220
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
19
Resilience: Unit (Modulus of Resilience), kJ/m3 410
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 29
31
Strength to Weight: Bending, points 25
38
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 0
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20.5 to 23
0.25 to 0.5
Copper (Cu), % 0.5 to 1.5
0 to 0.2
Iron (Fe), % 35.5 to 46.2
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 0 to 3.0
0 to 0.1
Molybdenum (Mo), % 6.5 to 8.0
0
Nickel (Ni), % 26 to 28
0 to 0.15
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
7.5 to 9.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15