MakeItFrom.com
Menu (ESC)

S31655 Stainless Steel vs. 332.0 Aluminum

S31655 stainless steel belongs to the iron alloys classification, while 332.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31655 stainless steel and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
110
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 39
1.0
Fatigue Strength, MPa 300
90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 490
190
Tensile Strength: Ultimate (UTS), MPa 710
250
Tensile Strength: Yield (Proof), MPa 350
190

Thermal Properties

Latent Heat of Fusion, J/g 290
530
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1430
580
Melting Onset (Solidus), °C 1380
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
84

Otherwise Unclassified Properties

Base Metal Price, % relative 17
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 3.3
7.8
Embodied Energy, MJ/kg 46
140
Embodied Water, L/kg 160
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 310
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 23
31
Thermal Diffusivity, mm2/s 4.0
42
Thermal Shock Resistance, points 16
12

Alloy Composition

Aluminum (Al), % 0
80.1 to 89
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 0 to 1.0
2.0 to 4.0
Iron (Fe), % 63.2 to 71.9
0 to 1.2
Magnesium (Mg), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0.5 to 1.5
0
Nickel (Ni), % 8.0 to 9.5
0 to 0.5
Nitrogen (N), % 0.14 to 0.25
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
8.5 to 10.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5