MakeItFrom.com
Menu (ESC)

S31655 Stainless Steel vs. ASTM A182 Grade F6b

Both S31655 stainless steel and ASTM A182 grade F6b are iron alloys. Both are furnished in the annealed condition. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S31655 stainless steel and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
260
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
18
Fatigue Strength, MPa 300
440
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 490
530
Tensile Strength: Ultimate (UTS), MPa 710
850
Tensile Strength: Yield (Proof), MPa 350
710

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 430
390
Maximum Temperature: Mechanical, °C 1010
750
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.2
Embodied Energy, MJ/kg 46
30
Embodied Water, L/kg 160
100

Common Calculations

PREN (Pitting Resistance) 27
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
140
Resilience: Unit (Modulus of Resilience), kJ/m3 310
1280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 23
26
Thermal Diffusivity, mm2/s 4.0
6.7
Thermal Shock Resistance, points 16
31

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 19.5 to 21.5
11.5 to 13.5
Copper (Cu), % 0 to 1.0
0 to 0.5
Iron (Fe), % 63.2 to 71.9
81.2 to 87.1
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0.5 to 1.5
0.4 to 0.6
Nickel (Ni), % 8.0 to 9.5
1.0 to 2.0
Nitrogen (N), % 0.14 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020