MakeItFrom.com
Menu (ESC)

S31655 Stainless Steel vs. S41003 Stainless Steel

Both S31655 stainless steel and S41003 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S31655 stainless steel and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
21
Fatigue Strength, MPa 300
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 490
320
Tensile Strength: Ultimate (UTS), MPa 710
520
Tensile Strength: Yield (Proof), MPa 350
310

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 430
390
Maximum Temperature: Mechanical, °C 1010
720
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
27
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 17
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.9
Embodied Energy, MJ/kg 46
27
Embodied Water, L/kg 160
97

Common Calculations

PREN (Pitting Resistance) 27
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
92
Resilience: Unit (Modulus of Resilience), kJ/m3 310
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 4.0
7.2
Thermal Shock Resistance, points 16
19

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 19.5 to 21.5
10.5 to 12.5
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 63.2 to 71.9
83.4 to 89.5
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0.5 to 1.5
0
Nickel (Ni), % 8.0 to 9.5
0 to 1.5
Nitrogen (N), % 0.14 to 0.25
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030