MakeItFrom.com
Menu (ESC)

S31727 Stainless Steel vs. 2025 Aluminum

S31727 stainless steel belongs to the iron alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31727 stainless steel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 40
15
Fatigue Strength, MPa 240
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 430
240
Tensile Strength: Ultimate (UTS), MPa 630
400
Tensile Strength: Yield (Proof), MPa 270
260

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 4.7
7.9
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 180
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
55
Resilience: Unit (Modulus of Resilience), kJ/m3 190
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 22
37
Strength to Weight: Bending, points 20
40
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19
0 to 0.1
Copper (Cu), % 2.8 to 4.0
3.9 to 5.0
Iron (Fe), % 53.7 to 61.3
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.4 to 1.2
Molybdenum (Mo), % 3.8 to 4.5
0
Nickel (Ni), % 14.5 to 16.5
0
Nitrogen (N), % 0.15 to 0.21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15