MakeItFrom.com
Menu (ESC)

S31727 Stainless Steel vs. 2195 Aluminum

S31727 stainless steel belongs to the iron alloys classification, while 2195 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31727 stainless steel and the bottom bar is 2195 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 40
9.3
Fatigue Strength, MPa 240
190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 430
350
Tensile Strength: Ultimate (UTS), MPa 630
590
Tensile Strength: Yield (Proof), MPa 270
560

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 1010
210
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1390
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 4.7
8.6
Embodied Energy, MJ/kg 64
160
Embodied Water, L/kg 180
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
54
Resilience: Unit (Modulus of Resilience), kJ/m3 190
2290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 22
55
Strength to Weight: Bending, points 20
53
Thermal Shock Resistance, points 14
26

Alloy Composition

Aluminum (Al), % 0
91.9 to 94.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19
0
Copper (Cu), % 2.8 to 4.0
3.7 to 4.3
Iron (Fe), % 53.7 to 61.3
0 to 0.15
Lithium (Li), % 0
0.8 to 1.2
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.25
Molybdenum (Mo), % 3.8 to 4.5
0
Nickel (Ni), % 14.5 to 16.5
0
Nitrogen (N), % 0.15 to 0.21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.080 to 0.16
Residuals, % 0
0 to 0.15