MakeItFrom.com
Menu (ESC)

S31727 Stainless Steel vs. 355.0 Aluminum

S31727 stainless steel belongs to the iron alloys classification, while 355.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31727 stainless steel and the bottom bar is 355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
72 to 83
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 40
1.5 to 2.6
Fatigue Strength, MPa 240
55 to 70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 430
150 to 240
Tensile Strength: Ultimate (UTS), MPa 630
200 to 260
Tensile Strength: Yield (Proof), MPa 270
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1440
620
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 4.7
8.0
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.7 to 5.9
Resilience: Unit (Modulus of Resilience), kJ/m3 190
150 to 250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22
20 to 27
Strength to Weight: Bending, points 20
28 to 33
Thermal Shock Resistance, points 14
9.1 to 12

Alloy Composition

Aluminum (Al), % 0
90.3 to 94.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19
0 to 0.25
Copper (Cu), % 2.8 to 4.0
1.0 to 1.5
Iron (Fe), % 53.7 to 61.3
0 to 0.6
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 3.8 to 4.5
0
Nickel (Ni), % 14.5 to 16.5
0
Nitrogen (N), % 0.15 to 0.21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15