MakeItFrom.com
Menu (ESC)

S31727 Stainless Steel vs. 6262A Aluminum

S31727 stainless steel belongs to the iron alloys classification, while 6262A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31727 stainless steel and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 40
4.5 to 11
Fatigue Strength, MPa 240
94 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 430
190 to 240
Tensile Strength: Ultimate (UTS), MPa 630
310 to 410
Tensile Strength: Yield (Proof), MPa 270
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
580
Specific Heat Capacity, J/kg-K 470
890
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 24
11
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 4.7
8.4
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 190
540 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 22
31 to 41
Strength to Weight: Bending, points 20
36 to 44
Thermal Shock Resistance, points 14
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19
0.040 to 0.14
Copper (Cu), % 2.8 to 4.0
0.15 to 0.4
Iron (Fe), % 53.7 to 61.3
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 3.8 to 4.5
0
Nickel (Ni), % 14.5 to 16.5
0
Nitrogen (N), % 0.15 to 0.21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15