MakeItFrom.com
Menu (ESC)

S31727 Stainless Steel vs. C19100 Copper

S31727 stainless steel belongs to the iron alloys classification, while C19100 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is S31727 stainless steel and the bottom bar is C19100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
17 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 430
170 to 330
Tensile Strength: Ultimate (UTS), MPa 630
250 to 630
Tensile Strength: Yield (Proof), MPa 270
75 to 550

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1390
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 16
17

Otherwise Unclassified Properties

Base Metal Price, % relative 24
33
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 4.7
2.7
Embodied Energy, MJ/kg 64
43
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
60 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 190
24 to 1310
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
7.7 to 20
Strength to Weight: Bending, points 20
9.9 to 18
Thermal Shock Resistance, points 14
8.9 to 22

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19
0
Copper (Cu), % 2.8 to 4.0
96.5 to 98.6
Iron (Fe), % 53.7 to 61.3
0 to 0.2
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.8 to 4.5
0
Nickel (Ni), % 14.5 to 16.5
0.9 to 1.3
Nitrogen (N), % 0.15 to 0.21
0
Phosphorus (P), % 0 to 0.030
0.15 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0.35 to 0.6
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5