MakeItFrom.com
Menu (ESC)

S31727 Stainless Steel vs. C28000 Muntz Metal

S31727 stainless steel belongs to the iron alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S31727 stainless steel and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
10 to 45
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 83
55 to 78
Shear Modulus, GPa 78
40
Shear Strength, MPa 430
230 to 330
Tensile Strength: Ultimate (UTS), MPa 630
330 to 610
Tensile Strength: Yield (Proof), MPa 270
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1440
900
Melting Onset (Solidus), °C 1390
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 24
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 4.7
2.7
Embodied Energy, MJ/kg 64
46
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 190
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22
11 to 21
Strength to Weight: Bending, points 20
13 to 20
Thermal Shock Resistance, points 14
11 to 20

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19
0
Copper (Cu), % 2.8 to 4.0
59 to 63
Iron (Fe), % 53.7 to 61.3
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.8 to 4.5
0
Nickel (Ni), % 14.5 to 16.5
0
Nitrogen (N), % 0.15 to 0.21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3