MakeItFrom.com
Menu (ESC)

S31727 Stainless Steel vs. C41500 Brass

S31727 stainless steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S31727 stainless steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
2.0 to 42
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 83
62 to 90
Shear Modulus, GPa 78
42
Shear Strength, MPa 430
220 to 360
Tensile Strength: Ultimate (UTS), MPa 630
340 to 560
Tensile Strength: Yield (Proof), MPa 270
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1390
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 4.7
2.8
Embodied Energy, MJ/kg 64
45
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
11 to 18
Strength to Weight: Bending, points 20
12 to 17
Thermal Shock Resistance, points 14
12 to 20

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19
0
Copper (Cu), % 2.8 to 4.0
89 to 93
Iron (Fe), % 53.7 to 61.3
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.8 to 4.5
0
Nickel (Ni), % 14.5 to 16.5
0
Nitrogen (N), % 0.15 to 0.21
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5