MakeItFrom.com
Menu (ESC)

S31727 Stainless Steel vs. C90200 Bronze

S31727 stainless steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S31727 stainless steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
70
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
30
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 630
260
Tensile Strength: Yield (Proof), MPa 270
110

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1440
1050
Melting Onset (Solidus), °C 1390
880
Specific Heat Capacity, J/kg-K 470
370
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 24
34
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 4.7
3.3
Embodied Energy, MJ/kg 64
53
Embodied Water, L/kg 180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
63
Resilience: Unit (Modulus of Resilience), kJ/m3 190
55
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
8.3
Strength to Weight: Bending, points 20
10
Thermal Shock Resistance, points 14
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19
0
Copper (Cu), % 2.8 to 4.0
91 to 94
Iron (Fe), % 53.7 to 61.3
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.8 to 4.5
0
Nickel (Ni), % 14.5 to 16.5
0 to 0.5
Nitrogen (N), % 0.15 to 0.21
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6