MakeItFrom.com
Menu (ESC)

S31730 Stainless Steel vs. 4004 Aluminum

S31730 stainless steel belongs to the iron alloys classification, while 4004 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31730 stainless steel and the bottom bar is 4004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 40
2.4
Fatigue Strength, MPa 170
42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 370
63
Tensile Strength: Ultimate (UTS), MPa 540
110
Tensile Strength: Yield (Proof), MPa 200
60

Thermal Properties

Latent Heat of Fusion, J/g 290
540
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 470
910
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 4.6
8.0
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 99
25
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 19
12
Strength to Weight: Bending, points 18
20
Thermal Shock Resistance, points 12
5.1

Alloy Composition

Aluminum (Al), % 0
86 to 90
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 4.0 to 5.0
0 to 0.25
Iron (Fe), % 52.4 to 61
0 to 0.8
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 15 to 16.5
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.0 to 10.5
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15