MakeItFrom.com
Menu (ESC)

S31730 Stainless Steel vs. 705.0 Aluminum

S31730 stainless steel belongs to the iron alloys classification, while 705.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31730 stainless steel and the bottom bar is 705.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
62 to 65
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 40
8.4 to 10
Fatigue Strength, MPa 170
63 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 540
240 to 260
Tensile Strength: Yield (Proof), MPa 200
130

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 470
890
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 4.6
8.4
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
18 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 99
120 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 19
24 to 26
Strength to Weight: Bending, points 18
31 to 32
Thermal Shock Resistance, points 12
11

Alloy Composition

Aluminum (Al), % 0
92.3 to 98.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 19
0 to 0.4
Copper (Cu), % 4.0 to 5.0
0 to 0.2
Iron (Fe), % 52.4 to 61
0 to 0.8
Magnesium (Mg), % 0
1.4 to 1.8
Manganese (Mn), % 0 to 2.0
0 to 0.6
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 15 to 16.5
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.3
Residuals, % 0
0 to 0.15