MakeItFrom.com
Menu (ESC)

S31730 Stainless Steel vs. C355.0 Aluminum

S31730 stainless steel belongs to the iron alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31730 stainless steel and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
86 to 90
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 40
2.7 to 3.8
Fatigue Strength, MPa 170
76 to 84
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 540
290 to 310
Tensile Strength: Yield (Proof), MPa 200
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1430
620
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 4.6
8.0
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 99
290 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 19
30 to 32
Strength to Weight: Bending, points 18
36 to 37
Thermal Shock Resistance, points 12
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 4.0 to 5.0
1.0 to 1.5
Iron (Fe), % 52.4 to 61
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 15 to 16.5
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15