MakeItFrom.com
Menu (ESC)

S31730 Stainless Steel vs. EN AC-46200 Aluminum

S31730 stainless steel belongs to the iron alloys classification, while EN AC-46200 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31730 stainless steel and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
82
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 40
1.1
Fatigue Strength, MPa 170
87
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 540
210
Tensile Strength: Yield (Proof), MPa 200
130

Thermal Properties

Latent Heat of Fusion, J/g 290
510
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1430
620
Melting Onset (Solidus), °C 1390
540
Specific Heat Capacity, J/kg-K 470
880
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 4.6
7.7
Embodied Energy, MJ/kg 63
140
Embodied Water, L/kg 180
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 99
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 18
28
Thermal Shock Resistance, points 12
9.5

Alloy Composition

Aluminum (Al), % 0
82.6 to 90.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 4.0 to 5.0
2.0 to 3.5
Iron (Fe), % 52.4 to 61
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0 to 2.0
0.15 to 0.65
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 15 to 16.5
0 to 0.35
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.2
Residuals, % 0
0 to 0.25