MakeItFrom.com
Menu (ESC)

S31803 Stainless Steel vs. AISI 348 Stainless Steel

Both S31803 stainless steel and AISI 348 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S31803 stainless steel and the bottom bar is AISI 348 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
41
Fatigue Strength, MPa 370
200
Poisson's Ratio 0.27
0.28
Reduction in Area, % 50
53
Shear Modulus, GPa 80
77
Shear Strength, MPa 460
400
Tensile Strength: Ultimate (UTS), MPa 710
580
Tensile Strength: Yield (Proof), MPa 500
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 430
480
Maximum Temperature: Mechanical, °C 1060
940
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 17
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.7
Embodied Energy, MJ/kg 49
54
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 34
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
190
Resilience: Unit (Modulus of Resilience), kJ/m3 630
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 4.3
4.2
Thermal Shock Resistance, points 20
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 21 to 23
17 to 19
Cobalt (Co), % 0
0 to 0.2
Iron (Fe), % 63.7 to 71.9
63.8 to 74
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1