MakeItFrom.com
Menu (ESC)

S31803 Stainless Steel vs. EN AC-43500 Aluminum

S31803 stainless steel belongs to the iron alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31803 stainless steel and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
68 to 91
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 29
4.5 to 13
Fatigue Strength, MPa 370
62 to 100
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 710
220 to 300
Tensile Strength: Yield (Proof), MPa 500
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 300
550
Maximum Temperature: Mechanical, °C 1060
170
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.6
7.8
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 160
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 630
130 to 200
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 25
24 to 33
Strength to Weight: Bending, points 23
32 to 39
Thermal Diffusivity, mm2/s 4.3
60
Thermal Shock Resistance, points 20
10 to 14

Alloy Composition

Aluminum (Al), % 0
86.4 to 90.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21 to 23
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 63.7 to 71.9
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0 to 2.0
0.4 to 0.8
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
9.0 to 11.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15