MakeItFrom.com
Menu (ESC)

S32003 Stainless Steel vs. Grade 7 Titanium

S32003 stainless steel belongs to the iron alloys classification, while grade 7 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32003 stainless steel and the bottom bar is grade 7 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
24
Fatigue Strength, MPa 370
250
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
38
Shear Strength, MPa 480
270
Tensile Strength: Ultimate (UTS), MPa 730
420
Tensile Strength: Yield (Proof), MPa 510
340

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 1010
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 13
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.2

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.0
47
Embodied Energy, MJ/kg 42
800
Embodied Water, L/kg 150
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
95
Resilience: Unit (Modulus of Resilience), kJ/m3 660
560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 26
26
Strength to Weight: Bending, points 23
28
Thermal Diffusivity, mm2/s 4.0
8.9
Thermal Shock Resistance, points 21
31

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 19.5 to 22.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 68.2 to 75.9
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 3.0 to 4.0
0
Nitrogen (N), % 0.14 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.12 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
98.7 to 99.88
Residuals, % 0
0 to 0.4