MakeItFrom.com
Menu (ESC)

S32003 Stainless Steel vs. Nickel 686

S32003 stainless steel belongs to the iron alloys classification, while nickel 686 belongs to the nickel alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32003 stainless steel and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
220
Elongation at Break, % 28
51
Fatigue Strength, MPa 370
410
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
77
Shear Strength, MPa 480
560
Tensile Strength: Ultimate (UTS), MPa 730
780
Tensile Strength: Yield (Proof), MPa 510
350

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 1010
980
Melting Completion (Liquidus), °C 1440
1380
Melting Onset (Solidus), °C 1400
1340
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 15
9.8
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 14
70
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 3.0
12
Embodied Energy, MJ/kg 42
170
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
320
Resilience: Unit (Modulus of Resilience), kJ/m3 660
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 4.0
2.6
Thermal Shock Resistance, points 21
21

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.010
Chromium (Cr), % 19.5 to 22.5
19 to 23
Iron (Fe), % 68.2 to 75.9
0 to 5.0
Manganese (Mn), % 0 to 2.0
0 to 0.75
Molybdenum (Mo), % 1.5 to 2.0
15 to 17
Nickel (Ni), % 3.0 to 4.0
49.5 to 63
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.080
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4